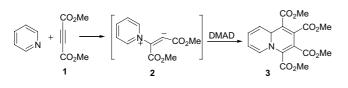


Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 3203-3205

Tetrahedron Letters

Novel pyridine catalysed reactions of dimethyl acetylenedicarboxylate (DMAD) and arylmethylidenemalononitriles: a stereoselective synthesis of highly substituted buta-1,3-dienes


Vijay Nair,^{a,*} B. Rema Devi,^a N. Vidya,^a Rajeev S. Menon,^a N. Abhilash^a and Nigam P. Rath^b

^aOrganic Chemistry Division, Regional Research Laboratory (CSIR), Trivandrum 695 019, India ^bDepartment of Chemistry, University of Missouri, St. Louis, MI 63121-4499, USA

Received 12 January 2004; revised 16 February 2004; accepted 27 February 2004

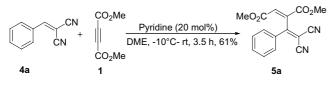
Abstract—A pyridine catalysed addition of dimethyl acetylenedicarboxylate to various arylmethylidenemalononitriles to afford highly substituted 1,3-butadienes with complete stereoselectivity is described. © 2004 Elsevier Ltd. All rights reserved.

The reaction of nucleophiles, nitrogen-containing heterocycles in particular, with activated acetylenes has been the subject of considerable research over the last several decades.¹ The earliest work in this area appears to be that of Diels and Alder, who in 1932 showed that pyridine reacts smoothly with dimethyl acetylenedicarboxylate (DMAD) **1** to form an adduct of unknown structure.² Decades later, the structure of the adduct was established as the 4*H*-quinolizine **3** by the systematic and elaborate investigations of Acheson and co-workers (Scheme 1).³ The intermediacy of 1,4-dipolar species **2** was established by its intramolecular trapping with carbonyl groups by Winterfeldt.^{1a,4} Reports of intermolecular trapping of the 1,4-dipole **2** with carbon

Scheme 1.

dioxide and phenyl isocyanate, respectively, by Acheson and Plunkett⁵ and Huisgen et al.⁶ are also noteworthy.

In view of our general interest in multicomponent reactions (MCRs) involving zwitterionic species^{7,8} we envisaged the possibility of trapping the 1,4-dipole with aryl aldehydes. In the event we did not observe the expected MCR product; instead the reaction afforded the corresponding aroyl fumarate with pyridine playing a mediator role for the formation of a carbon-carbon bond between the aldehyde and DMAD.9 A similar reaction was also observed with N-tosylimines.^{9c} In this context we recognised the potential of such a pyridine catalysed reaction of DMAD and suitable electrophilic alkenes to deliver highly substituted buta-1,3-dienes. The preliminary results of our investigations involving β -dicyanostyrenes leading to the formation of the expected buta-1,3-dienes are presented in this communication.


In an initial experiment, the reaction of DMAD 1 with benzylidenemalononitrile 4a in the presence of pyridine (20 mol%) in dimethoxyethane afforded the highly substituted butadiene derivative 5a in 61% yield (Scheme 2).

The product was characterised on the basis of spectroscopic data.¹⁰ In the ¹H NMR spectrum the two carbomethoxy groups were observed at δ 3.83 and 3.77 as

Keywords: Pyridine; Dimethyl acetylenedicarboxylate; Dipoles.

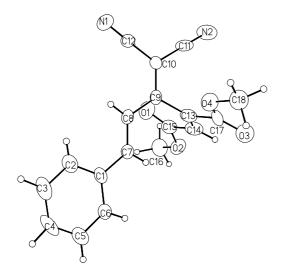
^{*} Corresponding author. Tel.: +91-471-2490406; fax: +91-471-24917-12; e-mail: vijaynair_2001@yahoo.com

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.02.132

Scheme 2.

singlets, supporting the IR absorption at 1729 cm⁻¹. The olefinic proton resonated at δ 7.20. The ¹³C signals for the two methoxycarbonyl groups were seen at δ 163.3 and 162.5. Single crystal X-ray analysis of **5h** provided the final confirmation of the structural assignment of the compounds in the series (Fig. 1).¹¹

A variety of dicyanostyrenes were found to participate in the reaction affording the 1,3-dienes in good to excellent yields. The results are summarised in Table 1.



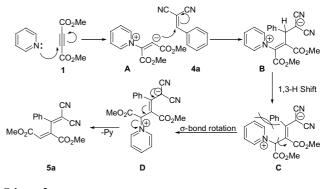

Figure 1. Single crystal X-ray structure of 5h.

Table 1. Reaction of arylmethylidenemalononitriles with DMAD catalysed by pyridine^a

	$\begin{array}{c} CO_2Me \\ \\ \\ \\ + \\ CO_2Me \\ 1 \\ \end{array} \begin{array}{c} CO_2Me \\ \hline \\ \mathbf{4b}-\mathbf{j} \end{array} \begin{array}{c} CN \\ - \\ DME, -1e \\ DME, -1e \\ \hline \\ \mathbf{4b}-\mathbf{j} \\ \end{array}$	NCCN (20 mol%) 0 °C-RT ← CO ₂ Me MeO ₂ C 5b-j	
Entry	Styrene, R =	Time, t (h)	Yield (%) ^b
1	4-Fluorophenyl, 4b	3.5	82
2	3-Nitrophenyl, 4c	3.5	71
3	4-Chlorophenyl, 4d	3.5	87
4	1-Naphthyl, 4e	3.5	92
5	3,4-Dichlorophenyl, 4f	3.5	82
6	4-Methoxyphenyl, 4g	12	78
7	trans-Cinnamyl, 4h	3.5	45
8	Ph Ph Ph	3.5	43
9	3-Benzyloxyphenyl, 4j	12	75

^a See Ref. 10 for experimental details.

^b Isolated yield.

Scheme 3.

Efforts to replace pyridine as the catalyst were unsuccessful; other catalysts such as *N*-methylimidazole and triphenylphosphine gave only traces of the desired product under similar conditions.

A mechanistic rationalisation for the reaction is provided in Scheme 3. The initially formed 1,4-dipole A can add to the electrophilic carbon-carbon double bond of 4a to provide a new zwitterion B, which can undergo a [1,3]-H shift to provide C. The latter can exist in equilibrium with a more stable conformer D. Elimination of pyridine from D will deliver the butadiene 5a with E configuration. It may be surmised that the stereoselectivity of the reaction is predicated on the elimination of pyridine occurring from the rotamer D, which is stereoelectronically disposed for the favourable *trans* elimination.

In conclusion, we have devised an easy method for the synthesis of highly substituted 1,3-butadienes, which are potential candidates for inverse electron demand Diels– Alder reactions. Further investigations aimed at defining the scope and limitations of the reaction are in progress.

Acknowledgements

R.S.M. thanks CSIR, New Delhi for a research fellowship. N.A. thanks the Indo-French Center for the Promotion of Advanced Research for financial support. The authors thank Ms. Saumini Mathew for recording NMR spectra and Ms. S. Viji for elemental analyses.

References and notes

- Reviews: (a) Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1967, 6, 423–434; (b) Acheson, R. M.; Elmore, N. F. Adv. Heterocycl. Chem. 1978, 23, 263–483.
- 2. Diels, O.; Alder, K. Liebigs Ann. Chem. 1932, 498, 16-49.
- (a) Acheson, R. M.; Taylor, G. A. Proc. Chem. Soc. 1959, 186–187; (b) Acheson, R. M.; Taylor, G. A. J. Chem. Soc. 1960, 1691; (c) Acheson, R. M.; Gagam, J. M. F.; Taylor, G. A. J. Chem. Soc. 1963, 1903; (d) Acheson, R. M.; Plunkett, A. O. J. Chem. Soc., Perkin. Trans. 1 1975, 438– 446.

- 4. Winterfeldt, E.; Naumann, A. Chem. Ber. 1965, 98, 3537.
- 5. Acheson, R. M.; Plunkett, A. O. J. Chem. Soc. 1964, 2676.
- Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. Chem. Ber. 1967, 100, 1094.
- Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899–907.
- (a) Nair, V.; Vinod, A. U. Chem. Commun. 2000, 1019– 1020; (b) Nair, V.; Vinod, A. U. J. Org. Chem. 2001, 66, 4427–4429; (c) Nair, V.; Mathen, J. S.; Vinod, A. U.; Varma, R. L. Chem. Lett. 2001, 738–739; (d) Nair, V.; Vinod, A. U.; Abhilash, N.; Menon, R. S.; Santhi, V.; Varma, L. R.; Viji, S.; Mathew, S.; Srinivas, R. Tetrahedron 2003, 59, 10279–10286; (e) Nair, V.; Sreekanth, A. R.; Biju, A. T.; Rath, N. P. Tetrahedron Lett. 2003, 44, 729– 732; (f) Nair, V.; Sreekanth, A. R.; Abhilash, N.; Bhadbhade, M. M.; Gonnade, R. C. Org. Lett. 2002, 4, 3575–3577.
- (a) Nair, V.; Sreekanth, A. R.; Vinod, A. U. Org. Lett.
 2001, 3, 3495–3497; (b) Nair, V.; Sreekanth, A. R.; Vinod,
 A. U. Org. Lett. 2002, 4, 2807–2807; (c) Nair, V.;
 Sreekanth, A. R.; Abhilash, N.; Biju, A. T.; Remadevi,

B.; Menon, R. S.; Rath, N. P.; Srinivas, R. Synthesis 2003, 1895–1902.

- 10. Representative experimental procedure and spectroscopic data for 5h: A solution of DMAD (142 mg, 1 mmol) and 4h (198 mg, 1.1 mmol) in dry DME (10 mL) under an argon atmosphere was cooled to -10 °C. To this, pyridine (16 mg, 0.2 mmol) was added and the reaction mixture was stirred for 3.5 h at rt. The solvent was then removed under vacuum and the residue on chromatographic separation on a silica gel column using hexanes-ethyl acetate (95:5) gave the product 5h as a colourless crystalline solid (145 mg, 45%). Mp: 118-121 °C. IR (KBr) v max: 3731, 3705, 2955, 2365, 2344, 2225, 1724, 1600, 1527, 1439, 1258, 1015 cm^{-1} . ¹H NMR: δ 7.55 (m, 2H), 7.46 (m, 4H), 7.30 (s, 1H), 6.90 (d, J = 15.8 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 3H). ¹³C NMR: *δ* 164.9, 163.0, 162.7, 145.1, 138.2, 134.1, 131.8, 129.0, 128.2, 128.0, 122.6, 112.3, 111.6, 53.9, 52.8. Anal. Calcd for C₁₈H₁₄N₂O₄: C, 67.07; H, 4.38; N, 8.69. Found: C, 67.23; H, 4.06; N, 8.76.
- 11. Single crystal X-ray structure data for **5h** have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 231299.